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1 Introduction

This project aims to study the evolutions in the structure of transaction sign
autocorrelation on electronic stock markets between 2000 and 2013. Previous
works on this topic, based on data from the first half of the 2000’s, describe
a very long memory of these signs (with a power-law decrease of autocorre-
lation). It is then natural to ask whether the massive rise of high-frequency
trading and automated execution strategies have induced significant evolu-
tions of this structure.

The high-frequency data used to conduct this study was provided by the
Chair of Quantitative Finance at CentraleSupélec.

2 Literature review and state of the art

This study follows up on previous research, notably by Jean-Philippe Bouchaud
and Fabrizio Lillo on the long memory of trade signs on stock markets.

2.1 Autocorrelation

In order to examine the trade sign long-memory hypothesis, we will study
their autocorrelation, i.e. correlation of the signal with itself. Autocorrela-
tion allows detecting regularities or repeated patterns in a signal, even if it
is noisy.

The autocorrelation of a random process (Xn)n∈N with average µ and
variance σ2 is defined as:

ϕ(k) =
1

σ2
E[(Xi − µ)(Xi+k − µ)].

Autocorrelation takes its values in [−1, 1]. A value of 1 shows perfect corre-
lation between the process and its shifted copy.
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If we observe n values (x1, x2, . . . , xn) of a stationary process, the empir-
ical autocorrelation ϕ can be written as:

ϕ(k) =

∑n−k
i=1 (xi − x̄)(xi+k − x̄)∑n

i=1(xi − x̄)2
.

Some of the studies we quote here give results on the autocovariance, not
autocorrelation, of trade sign; these two functions being proportional, this
does not fundamentally change the speed of decrease.

We computed autocorrelation using the acf function in R.

2.2 Measures of exponents of trade sign autocorrela-
tion laws

Studying the London Stock Exchange (LSE), Fabrizio Lillo described a power-
law behavior for the autocorrelation of order sign. The exponent of this power
law ranges from γ = 0.39 to 0.6.[8]. He also observed a change of this expo-
nent around a lag of 500. This study was particularly concerned with data
from the Vodafone stock (at the time the most traded stock on the LSE).
The same study also describes a long-memory phenomenon with trade signs
on the New-York stock exchange.

Independently, Bouchaud applied these methods to the Paris stock ex-
change, notably to France Télécom and Total, and finds exponents ranging
from γ = 0.2 to γ = 0.7.[2]

These observations were studied in subsequent articles by models based ei-
ther on hidden orders,[1] or on traders blindly following market movement.[2]
In any case, the exponent γ is inferior to 1, which shows that autocorrelation
is non-integrable and corresponds to a long-memory process.

2.3 Other criteria for long-memory hypothesis valida-
tion

Lillo[8] notes that when studying of long-memory processes, autocorrelation
can be a delicate indicator because statistical errors can be important. The
study suggests another criterion for validating the long-memory hypothesis,
based on Lo’s version of Hurst’s R/S test.
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This test essentially consists in comparing the maximum and minimum of
the partial sums of the difference between observations and empirical mean:

max
1≤k≤n

k∑
j=1

(Xj − X̄n)− min
1≤k≤n

k∑
j=1

(Xj − X̄n)

The difference between the minimum and the maximum is larger for long-
memory processes; once this difference is normalized by the empirical vari-
ance of the sample, one can compute the confidence intervals for the long-
memory hypothesis. On the LSE, both Hurst’s original R/S test and Lo’s
version confirm the long-memory hypothesis.

2.4 Trade sign computation

The most common algorithm to determine the sign of trades from other in-
formation (volume, date, price) was described by Lee and Ready.[6] Although
studies from the end of the 1990’s evaluated its precision to about 85%,[4]
it was nonetheless criticized,[3] notably following recent changes on the mar-
kets. New algorithms were developed recently to address its shortcoming,
notably in CentraleSupélec.[9]

3 Methodology

3.1 Choice of stocks

We worked on a set of 15 stocks, all of which are traded on the Paris stock ex-
change: Accor (ACCP), Air France (AIRF), Alstom (ALSO), Axa (AXAF),
BNP Paribas (BNPP), Crédit Agricole (CAGR), Eurazeo (EURA), Casino
(CASP), LVMH, Sanofi (SASY), Société Générale (SOGN), Total (TOTF),
Ubisoft (UBIP), Vallourec (VLLP) and Zodiac Aerospace (ZODC). Liquidity
data for these stocks are summed up in annex A.

The data are considerably less noisy with the more liquid stocks (Total,
Société Générale, etc.). This is coherent with the literature and led us to
study them in priority to refine our analysis and optimize the processing.
The less liquid stocks are also more prone to unpredictable capital movements
involving a large portion of the (relatively small) capital.
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We have also checked that the month of March, which we privileged in
our study, was not a usual month of dividend payment for the stocks we
used.

3.2 Data retrieval

Availability of historical data CentraleSupélec’s Chair of quantitative
finance made trade and quotes data for various exchanges available to us.
We thank the Chair for these data, without which the study would not have
been possible. For this study, we used trade and quotes data from the Paris
stock exchange between 2000 and 2013, the most recent available year.

Trade signs were precomputed by the Chair using Muni Toke’s Algorithm.

Data pre-treatment The data we retrieved had some artifacts we had to
remove before we could process them. Some trades have no computed sign,
notably at the beginning and end of each day. These trades cannot be used
and were removed from our dataset.

Similarly, a few very large trades are reported outside the opening hours of
the market; these trades represent aggregates of trades that occurred outside
the normal trading period and on which we have little coherent data. We
have thus also removed the first and last 15 minutes of each day from our
dataset.

Order concatenation Frequently enough, a set of multiple trades corre-
sponds to a single buy or sell order. We group these trades during prepro-
cessing since the actual desire of the agent was only to pass one order, but
the insufficient liquidity of the market split it into several orders. Trades are
thus grouped if they are reported at the same time and with the same price
and sign.

Not grouping these trades would artificially augment trade sign autocor-
relation since all trades in such a group have the same sign.
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3.3 Segmentation

To best use our results, we have tried to smooth the differences that exist
between stocks (especially their varying liquidities). A comparison of trade
sign autocorrelation between the different stocks was made in annex B. There
also exists differences between two months on the same stock; in particular,
daily traded volume significantly increases year over year, as can be seen in
annex A.

In order to do so, we have grouped trades together in order to create
blocks that are comparable from one stock to another and from one year to
another. The autocorrelation is then computed on the bocks instead of the
raw trades. Several ways to segment trades are conceivable; we will detail
some of them in the following sections.

The major problem this method causes is that grouping successive trades
make trade sign autocorrelation decrease faster, since one unit of lag for
the grouped trades will correspond to several units for ungrouped trades.
Another problem is deciding how to assign signs to the newly created blocks.

In the following parts, we will call event time the computation of sign
autocorrelation without performing any grouping: individual trades are thus
considered to happen at uniformly spaced time intervals.

3.4 Physical time segmentation

A first approach to make data from different stocks more comparable is to
compute autocorrelation depending on physical time instead of event time.
To do so, a time interval is chosen and trades are grouped according to the
interval in which they belong.

Depending on the stocks, there can be as few as one or as many as a few
hundred trades per minutes.

3.5 Volume time segmentation

3.5.1 Absolute volume time segmentation

Volume time segmentation is a way to group trades according to traded
volume. In absolute volume time, the volume of a group (Vgroup) is the same
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Figure 1: Example of absolute volume time segmentation. All groups have
the same volume, regardless of the considered stock.

Figure 2: Example of relative volume segmentation. Each group’s volume
depends on the stock, but the total number of groups is constant across all
stocks.

for all stocks. An illustration of this segmentation method is shown on figure
1.

For instance, if we set Vgroup = 500 and if during the month of March
2009, 500 000 Total and 50 000 Zodiac Aerospace shares have been traded,
trades will be grouped in packs of 500 in both cases; there will then be
respectively 1000 and 100 trade groups. This method does not compensate
for the differences in total number of trades during a month, but allows
comparing two stocks by smoothing the differences caused by differences in
average order size.

For each stock s, we have V s
group = Vgroup.

3.5.2 Relative volume segmentation

Another way to perform volume segmentation is to choose a number N of
trade groups, and leave it constant across all stocks. We then have V s

group =
N · Vgroup for each stock s. This option is illustrated on figure 2.

Each (period, stock) pair will thus have its own group volume. This
volume represents a 1/N share of the total considered period. This method’s
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main advantage when compared to absolute volume segmentation is that all
groups have comparable influence overall.

3.6 Choice of sign for a trade group

When segmenting, several methods can be considered to decide the sign of a
set of grouped trades.

Most frequent sign Using this method, we count the number of +1 and
-1 trades in the group, and set the sign of the group to be the most
common. When thus have εgroup = ±1. This method can seem some-
what counter-intuitive, but reduces the problem of trade aggregation
lowering autocorrelation artificially. A variant of this method is to take
the volume of trades into account when determining the most frequent
sign.

Average Taking the average of all trades in the group is an obvious solution.
We then have εgroup ∈ [−1, 1]. A variant of this method is to weight
each trade with its volume.

We have used the second method for this study, because it gives a fairer
evaluation of each trade’s contribution, and it is not generally problematic
to have a non-integer sign. What is more, the most frequent sign method
could lead to overestimating autocorrelation by erasing heterogeneity in trade
signs.

3.7 Methods to split large trades into groups

Although the problem seems relatively simple, some important questions do
remain. Trade volumes are very variable, which makes it difficult to group
them nicely: what if a trade is larger than the volume we’ve chosen for a
group ?

3.7.1 Segmentation with overfilling

In this method, we concatenate trades up to volume Vgroup at least. If we
denote by τ = {Ti}i the set of trades in chronological order, Vi the volume
of Ti, and Gn the nth group:
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Figure 3: Segmentation of trades into isovolume groups, with and without
overfilling. The first bar represents volume time: each colored section corre-
sponds to unit volume Vu. The other two bars represent 5 trades of different
volumes. The color with which the trades are represented assigns them to
the group in which they are counted. The second bar shows segmentation
with overfills, the third one segmentation without overfills. Note this figure
is not to scale and that in practice group volumes should be much larger than
average trade size.

Gn =

{
Ti ∈ τ,

i−1∑
k=0

Vi < n× Vgroup and
i∑

k=0

Vi > n× Vgroup

}
(1)

In this configuration it is possible (and indeed almost guaranteed) that
groups will be overfilled, i.e. Vn > Vgroup for some groups. Groups will thus
not have the exact same volume. This method is illustrated on the second
line of figure 3. In this example, group 1 is overfilled, since trade 2 should
be splits over groups 1 and 2 but is only counted in group 1.

3.7.2 Segmentation without overfilling

This method consists of splitting trades that do not fit in one group. This
way, all groups will have the same volume, but a given trade can be counted
in several groups.

The last line of figure 3 illustrates this principle. Trade 2, which does not
fit, is split into trades 2A and 2B, which are respectively counted in volume
time 1 and volume time 2.

This method is coherent with the convention of computing group signs
with a weighted average of the trades they are made up of.
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3.8 Method choices

3.8.1 Method of segmentation

In order to compare stocks together in the best possible way, we have used
relative volume time and event time. While these two methods give different
results, both seem reasonable ways to make data comparable.

3.8.2 Parameter choice

Once a segmentation method is chosen, we must decide the value of its pa-
rameters. In our case the value of N is the main question. Let us first discuss
the impact this choice can have on our results.

N is too small If the number of subdivisions of the studied period is too
small, the volume of each group will be very large, and a large amount of
trades will be merged in one volume-time instant of volume Vgroup. This
causes a loss of information on the evolution of signs.

N is too large If N is too large, the opposite happens. Vgroup becomes
too small to contain more than one trade and we essentially go back to event
time, rendering segmentation useless.

To avoid these two problems, N must be as small as possible while re-
maining larger than the average size of a trade. That is, N is chosen in such
a way that the resulting Vgroup for all pairs of (period, stock) is larger than
the average size of a trade for that stock during that period.

3.8.3 Method of splitting

In the following, we have usually chosen the overfilling method, for several
reasons. First, splitting trades to avoid overfills was an extra data manipula-
tion, which could have introduced artifacts, and whose usefulness was limited
if the number of large overfills remained relatively low. This is relatively easy
to guarantee by choosing a large Vgroup.

Additionally, splitting trades can change the autocorrelation in some
cases. For instance, suppose that one trade has volume V & k × Vgroup,
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with k ≥ 2. Such a situation is shown by trade 4 in figure 3. If this trade is
split over several groups, it will influence the sign of several volume instants,
which over-evaluates its impact on autocorrelation. Specifically, trade 4 is
split into trade 4A, which counts for the second instant, trade 4B, which
counts for the third instant, and trade 4C which counts for the fourth in-
stant. If we choose not to split trades, this trade counts only for instant
2.1

4 Results

4.1 Averaging, segmentation

To compare the evolution of trade sign autocorrelation year to year, we’ve
averaged them in two ways:

• First, we averaged sign autocorrelations for the month of March over
the 15 stocks, year by year (i.e. the March 2000 data for Accor, Air
France, Crédit Agricole,. . . were averaged to give the general average
for March 2000; all March 2001 data was averaged to give that of 2001,
etc.)

• Then, we averaged the data of all months, year by year, for a single
stock. Given the very large amounts of data involved, we only com-
puted this average for Total and Crédit Agricole. These two stocks were
chosen because they’re very liquid and are part of two very different
industries.

In order to study the evolution of of trade sign autocorrelation decrease
between 2000 and now, the most usable plots are those of annual averages
over one or several stocks. Indeed, simply plotting the data without any
averaging often leads to noisy plots; averaging also helps correcting small
variations that can occur from one month to the next.

Generally speaking, plotting the data in event time and in volume time
(whether physical or absolute) gives similar results. In volume time, autocor-
relation decreases faster as the size of segments gets higher. This is expected:
if trades are divided into a small number of trade groups, trades in one trade

1In this case, group 3 will be empty. Empty groups are removed before computing
autocorrelation.
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group will on average be far from those in the next. Physical time plots are
generally somewhat noisier.

We have also checked that the noisier look of the plots of less liquid
stocks was actually due to statistical noise and not to different behavior of
sign autocorrelation for these stocks. Averaging the four stocks of our study
which were the least liquid in 2013 (Ubisoft, Eurazeo, Zodiac Aerospace and
Casino) gives essentially the same results as those we describe in the next
section, although the plot remains a bit noisier for large lags.

4.2 Study of the decrease in autocorrelation

Lillo[8] found the trade sign autocorrelation of the Vodaphone stock on the
LSE in 2004 to be significant up to a lag of 104. For the Total stock, we
find a coherent autocorrelation up to about 3 · 103 in 2005 et 103. However
the noise level is significant after a lag of 500, especially after averaging all
stocks in our study (which includes stocks far less liquid, and thus far more
noisy, than Total). For the remainder of this study, we have focused on lags
up to 300.

With both methods of averaging (over several stocks or over one stock),
we can observe a significant evolution starting in 2010. Until 2009, autocor-
relation follows a power law (figure 4)2. From 2010 on, autocorrelations can
be described with two successive power laws of differing exponents, changing
around t = 10.

These results are clearly visible on double logarithmic scale plots: in this
scale, trade sign autocorrelations form a straight line until 2009, then angle.
This phenomenon is visible on both methods of averaging. Using a linear
regression on the log-log plots, one finds an exponent of γ ≈ 0.28 to 0.38 up
to 2009, then about γ ≈ 0.50 to 0.60 on the first piece and γ ≈ 0.17 to 0.20
on the second. At a lag of 300, autocorrelation is approximatively equal for
all years (to about 10−2). At a lag of 10, however, it is equal to about 5 ·10−2

for 2010-2013, contrasting with a value of 10−1 for the 2000-2009 period.

These variations can also bee seen on relative volume time plots. Physical
time plots (with 60 second segments) suffer from higher noise; the break in
slope is not clearly visible, but autocorrelation at lag 2 is much higher in
2010-2013 than before. The following slope is also less steep.

2Figure 4 shows averaged data grouped by absolute volume time, in 100-trade groups.
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Overall, this change is relatively intriguing: in the later years, the initial
decrease is much faster but is compensated at larger lags by a slower decrease
of the tail.

4.3 Analysis

The most significant changes on financial markets since 2007-2008 are with-
out doubt market deregulation and the growing share of algorithmic trading
in exchanges. The impact of these changes can be relatively ambiguous:
high-frequency trading, for instance, will tend to cause a large amount of
trades, which depending on the algorithm can be of correlated signs or not.

Deregulation allows more actors to trade on the exchanges and have an
impact on trade signs. Trade sign autocorrelation may then have a steeper
decrease because of this increased liquidity.

Additionally, the growing role of algorithmic trading (in 2008, on the
German stock exchange, 50 to 60% of all traded volume was due to algorith-
mic trading[5]). This also adds liquidity to the market, and possibly noise
because of the large number of trades.

In any case, it remains difficult to explain why the power law exponent
grows in the second phase.

4.4 Potential development paths

Previous studies on this topic describe a power-law trade sign autocorrelation
decrease on all studied stock markets; hence, this study could be extended
to other market to confirm the changes we observe from 2010 onwards. Simi-
larly, it would be relevant to study years 2014 and 2015 to extend our analysis,
since these data were not available to us.

As we mentioned in the literature review, there exist other test criteria
for long memory hypothesis, and other quantities beside trade signs have
been shown to display long-memory behavior. These could provide relevant
extensions to this study in order to confirm or refine our results.
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Figure 4: Average trade sign autocorrelation for the month of March over
the 15 studied stocks in 2002, 2004, 2006 and 2009 to 2013. Log-log scale.
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A Studied stocks, numbers of trades

Cap. (May 16)
MEUR

Trades per month

2000 2005 2010 2013

- Total TOTF 105596 65357 120490 338476 276680
Crédit Agricole CAGR 23323 104650 (2002) 83786 199122 218274

BNP Paribas BNPP 60900 61786 81115 329312 403513
Société Générale SOGN 29204 34313 69226 338761 368382
Sanofi SASY 94544 27737 104858 213480 283496
Axa AXAF 55120 50386 115997 224724 216102
LVMH LVMH 73226 43585 46393 161565 146771
Air France AIRF 2163 29784 40515 82866 115807
Alstom ALSO 4938 32556 39708 157750 106303
Vallourec VLLP 1288 2546 6294 111369 88051
Accor ACCP 8886 61127 46873 82676 78528
Casino CASP 6000 24650 29096 51459 77790
Zodiac Aerospace ZODC 6111 7171 9276 38303 52562
Eurazeo EURA 4255 2033 5902 24263 20482
Ubisoft UBIP 3669 34767 9027 50633 16823
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B Autocorrelation graphs
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B.3 Global averages for Total (TOTF)
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B.4 Global averages by stock
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